Interfacing Chapel with traditional HPC
programming languages?

Adrian Prantl, Tom Epperly, Shams Imam, Vivek Sarkar

Center for Applied Scientific Computing (CASC)
Lawrence Livermore National Laboratory

_CASC

October 17, 2011

Fifth Conference on Partitioned Global Address Space Programing Models (PGAS 2011)

1Thls work performed under the ausplces of the U. S Department of Energy by Lawrence Livermore.National

Adr\an Prant\ <a n@llnl.gov> Interfacmg Chapel w. traditional HPC programming languages


adrian@llnl.gov

Interoperability with other programming languages. ..

m is not optional
m essential for the acceptance of a new language

Realistically, nobody will rewrite their entire multi-million line
codebase in the language du jour.

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Interoperability with other programming languages. ..

m is not optional
m essential for the acceptance of a new language

Realistically, nobody will rewrite their entire multi-million line
codebase in the language du jour.

BRAID

a tool that provides interoperability for PGAS languages
= Chapel first language to be supported

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Related work

Babel
- 22008 m LLNL's language

"’ interoperability toolkit for
high-performance computing

Fortran

m Designed for fast in-process
communication

m Handles generation of all
glue-code

m Features multi-dim. arrays,
OOP, RMI, ...

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

BRAID connects Babel with PGAS languages

Fortran

Python

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Design goals

B be minimally invasive

® minimal changes to the Chapel compiler
m user shouldn’t have to write special code

m play well with the Chapel runtime

m expected behavior of programs remains unchanged
m support distributed data types

m achieve maximum performance

m avoid copying of arguments (when possible)
m introduce minimal overhead

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

How does it work

Programming-language-neutral interface specification

Scientific Interface Definition Language (SIDL)

SIDL supporting
m fundamental data types
object-oriented programming (user-defined types)
interface inheritance
exception handling
dynamic multi-dimensional arrays

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Using Chapel with BRAID — |

first, define the interface in SIDL

import hplsupport;
package hpcc version 1.0 {
class ParallelTranspose {

// Cli,jl = Alj,i] + beta * C[i,j]
static void ptransCompute(
in hplsupport.Array2dDouble a,
in hplsupport.Array2dDouble c,
in double beta,
ininti,
inintj);

m no data members are defined in the SIDL file

m all methods are public and virtual methods can be defined
to be final or static

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Using Chapel with BRAID — I

m next, use the Babel compiler to generate the server
(callee) glue code:
~/cxxLib> babel --server=cxx hpcc.sidl

B generates code for skeleton and Intermediate Object
Representation (IOR)
m generates empty blocks expecting user code

m user fills in empty blocks as implementation code
m user compiles code into shared libraries

m Babel provides support for generating makefiles

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Using Chapel with BRAID — Il

m next, use the BRAID compiler to generate the client (caller)
glue code:
~/chplClient> braid --client=chapel hpcc.sidl
m generates code for stub and IOR
m user code uses the stub to make method calls
m user code unaware of implementation
m link to server code and SIDL runtime library during
compilation and run the executable

m Babel/BRAID bindings take care of interoperability!

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Control flow for crossing the language boundary

~/chplClient>{[Stub / Client]
v
convert arguments

~/cxxLib> [Skeleton / Server]

convert arguments

native = IOR IOR = native

call via EPV

|
I
I
I
]
I
I
I
]
I
I
|
]
I
I
]
I
|
| call native
I
|
I
I
I
]
I
I
I
I
I
|
I
I
I
]
I
I
I
]

< implementation
convert return value convert return value
IOR => native native = IOR
\ 4
IOR ...l intermediate object representation
EPV ... entry point vector (vtable)

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Chapel as client — challenges

convert Chapel data types to the IOR

add support for

m fundamental (primitive) types
local arrays
distributed arrays
object-oriented programming
exception handling

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Local Arrays

SIDL arrays represent rectangular regions

normal SIDL arrays

m general interface for arrays

B can be used as parameters/return types
B row-major or column-major order

m support arbitrary strides

W access via interface

raw arrays (r-arrays)

B not as return type or out args
m must be contiguous in memory with column-major order

= presented as native array type

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Local Arrays: Raw Array Example

SIDL File (interface of external function)

class ArrayOps {
static void matrixMultiply(in rarray<int,2> aArr(n,m),
in rarray<int,2> bArr(m,0), inout rarray<int,2> res(n,0),
inintn, inint m, in int 0);

}

User writes Chapel code:

var sidl_ex: BaseException = nil;
varn=3,m=3,0=2;

var a: [0.. #n, 0.. #m] int(32); // a 2D Chapel local array
var b: [0.. #m, 0.. #0] int(32);

var x: [0.. #n, 0.. #0] int(32);

// initialize the input matrices

[(i)in[0..8]]1ali/m,i% m] =i

[(i) in [0..5]]1 b[i/0,i % 0] =i;

// call the implementation of matrix multiply
ArrayOps_static.matrixMultiply(a, b, x, n, m, o, sidl_ex);

Adrian Prantl <a @llnl.gov> Interfacing Chapel w. trad al HPC programming languages


adrian@llnl.gov

Local Arrays cont’d.

user can use any Chapel rectangular array as raw array
= includes support for distributed arrays!

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Local Arrays cont’d.

user can use any Chapel rectangular array as raw array
= includes support for distributed arrays!

BRAID client code automatically

converts input arrays to required SIDL type
m copying involved when input arrays are

not contiguous (e.g. distributed)
not in column-major order for raw-arrays

m custom Chapel library extensions for column-major
ordered arrays and borrowed arrays for extra speed

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Distributed Arrays

Copying everything is too inefficient?

Adrian Prantl <a @llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Distributed Arrays

Copying everything is too inefficient?

Custom type: SIDL.DistributedArray

B no contiguous or ordering requirements

m use Chapel runtime to access elements, server language
(C, Java, etc.) unaware of communication

B minimal overhead, data transferred on access!

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Object-oriented programming — |

SIDL supports packages, abstract classes, static and virtual
methods
Chapel OOP support still in flux

® cannot inherit from classes with custom constructors

BRAID support for packages and static methods

m packages mapped to Chapel modules
m multiple Chapel classes can reside in a single module
m static methods mapped to additional Chapel modules

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Object-oriented programming — Il

Chapel classes allocate IOR via calls to SIDL runtime

m reference counting used to keep track of references to this
newly allocated object

m Chapel class destructors decrement reference count to the
IOR object

Chapel types delegate calls to IOR
m virtual function calls are handled by SIDL runtime
m type-casting supported by explicit cast calls

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Calling a function that copies n arguments
copy bool, b; = aj

[ T T T T T T T T T T T T T |
i - - Python
[ 00000 a --@ - Java
105 | oee0e®®’ 4 |+ Fo3
o g JUT A 1 |—— Foo
% I ’r° 1 |—e— F77
o | @ EElgeEE | |—m C++
O ._..,...-l—l“ A
c 10* "gmasssn 1 |- ¢
o = ]
2 B i
] I ]
=5 L |
5 3
n 10° | =
£ B §
102 | 4
C L | | | | | | .|

| | | | | |
12 4 6 81012141618202224
n, number of in/out arguments (total = 2n)

Adrian Prantl <ai @llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Calling a function that copies n arguments
copy string, b; = a;

L ] - - Python
[ b --@- Java
10° b 4 |-+ FO3
) B i —— F90
% [ B —e— F77
S A i 1 | -—m— Cc++
c 10°) 4 |-e C
° B i
5 I 1
S | |
o
o 103 E
£ F g
102 | 4
C | 1 | | | | | .

| | | | | |
12 4 6 81012141618202224
n, number of in/out arguments (total = 2n)

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Calling a function that calculates the sum of n arguments
sum float,r=3a;

F T T T T T T T ]
-8 - Python
[ b -@- Java
10° b 4 |-+ FO3
- B i —x— F90
s ey | | T
o | mE ) C++
(8} _ _ .M
c 10%F g----g=-=-0-- o0 1 |- ¢
o r ]
= r ]
5 I ]
5 | N
b
n 103 F E
£ & §
102 | 4
F ' | E

| | |
1 2 4 8 16 32 56
n, number of in arguments (total = n+1)

Adrian Prantl <ai @llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Benchmark (distributed)

daxpy Benchmark

daxpy () hybrid Chapel/BLAS, n = 220

daxpy () pure Chapel, n = 22°

T ———

T

40
_ 30
8 5
s S 20
3 64 3 64
2 32 2 32
g 16 g 10

number of

64 128 2 f 32 64 128 2
256 512 1024200640968192 e, 796 512 102420484096 8192 paquryio:
block size cales block size cales

pure Chapel hybrid Chapel/BLAS

Interfacing Ch aditional HPC programming languages

Adrian Prantl <adrian@llnl.gov>


adrian@llnl.gov

Summary and Future Work

m Achieved interoperability between Chapel and

C

C++

FORTRAN 77

B Fortran 90/95
Fortran 2003/2008

A Java
Python

=including support distributed arrays

m add support for Chapel as server language
B use similar concepts to add support for UPC and X10

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


adrian@llnl.gov

Thank you!

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


http://compose-hpc.sourceforge.net
adrian@llnl.gov

Thank you!

http://compose-hpc.sourceforge.net (BSD licensed)

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


http://compose-hpc.sourceforge.net
adrian@llnl.gov

Thank you!

http://compose-hpc.sourceforge.net (BSD licensed)

Are there any Questions?

Adrian Prantl <adrian@llnl.gov> Interfacing Chapel w. traditional HPC programming languages


http://compose-hpc.sourceforge.net
adrian@llnl.gov

